

# MedeA: Cohesive Energy Density: Compute Key Thermodynamic Characteristics of Molecular Systems

#### Contents

- Introduction
- CED Usage
- CED Output

### **1** Introduction

*MedeA CED* computes the cohesive energy density (CED) and the solubility parameter,  $\delta$ , from a LAMMPS molecular dynamics simulation in the canonical (NVT) ensemble.

The CED is defined as the increase in internal energy, *U*, per mole of a substance when all intermolecular forces are eliminated [vanKrevelen2009]:

$$e_{coh} \equiv E_{coh}/V$$
 (at 298 K) in:  $J/cm$  or  $MJ/m$  or  $MPa$  (1)

*MedeA CED* provides an indication of a system's polarity and binding energy. For example, in a polymer, the higher the CED is the harder it is for guest molecules to permeate the polymer.

The solubility parameter is defined as:

$$\delta = (E_{coh}/V)^{1/2} \equiv e_{coh}^{1/2}$$
 (at 298 K) in :  $(J/cm)^{1/3}$  or  $(MJ/m)^{1/2}$  or  $MPa^{1/2}$  (2)

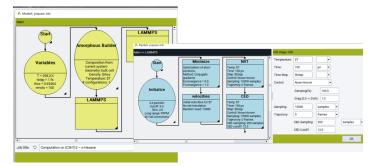
For liquids of low molecular weight, the CED is equivalent to the heat of vaporization divided by the molar volume in the condensed phase.

$$E_{coh} = \Delta U_{vap} = \Delta H_{vap} - p\Delta V \approx \Delta H_{vap} - RT$$
(3)

#### **Key Benefits**

- Automated setup, execution, and analysis of LAMMPS molecular dynamics simulations for cohesive energy density, solubility parameters, and interfacial tension calculations
- Handles model construction and assignment of forcefield atom types and charges in one unified environment so that there is no need to use external tools
- · Provides formatted output

**Hint:** The *MedeA CED* module works with molecular dynamics simulations using LAMMPS. Ab initio MD trajectories are not currently supported with the *CED* module.




## 2 CED Usage

The **CED** stage computes the cohesive energy density during a molecular dynamics simulation in the canonical (NVT) ensemble.

**Hint:** To start with, you need to set up a fluid or polymer model. When starting from a molecular system, use the *MedeA Amorphous Materials Builder* to generate an appropriate input structure. The *MedeA* flowchart library contains template workflows for building amorphous systems.

You can load the **CED** stage into any *MedeA LAMMPS* Flowchart. To do so, click on the structure window containing your system and select New Job... from the Jobs menu. In the below screenshot, the **Amorphous Builder** stage is followed by two **LAMMPS** stages. The second **LAMMPS** stage includes a **Minimize** stage, an equilibration run using an **NVT** stage, and finally the **CED** stage.



The parameters of the CED stage are:

- *Temperature*: The temperature at which to equilibrate the system and compute the interface tension.
- Time: The simulation time.
- *Time Step*: The time step size employed in solving the equations of motion.
- Control: The thermostat used for the NVT ensemble.
- Sampling: Number of samples, steps, or length of time from which to compute the CED.
- *Trajectory*: Write the configuration to a trajectory file with a frequency specified in frames, steps, or time.
- Cutoff: Cutoff in  ${\rm \AA}$  for the sampling used when computing the CED.

## 3 CED Output

After completing a CED simulation, results are written to Job.out and a results table is produced.



| Stage | 4.5: | Cohes | ive | ener | ٦g | / density | usi | ing | g NVT | Г : | inte | egrati | on |
|-------|------|-------|-----|------|----|-----------|-----|-----|-------|-----|------|--------|----|
|       | for  | 100   | ps  | with | а  | timestep  | of  | 1   | fs,   | Т   | is   | 298.2  | Κ  |

| Property     | Value   | +/- | Uncertainty | Units  | After Steps | % Run |
|--------------|---------|-----|-------------|--------|-------------|-------|
| t:           | 100000  |     |             | fs     |             |       |
| т:           | 298.214 | +/- | 0.022       | К      | 0           | 0.0%  |
| P:           | -29     | +/- | 49          | atm    | 0           | 0.0%  |
| V:           | 21859.4 | +/- | 3.8e-10     | Ang^3  | 0           | 0.0%  |
| rho:         | 0.65465 | +/- | 0           | g/mL   | 0           | 0.0%  |
| Etotal:      | 6758    | +/- | 21          | kJ/mol | 0           | 0.0%  |
| Epot:        | -677    | +/- | 21          | kJ/mol | 0           | 0.0%  |
| Ekin:        | 7434.76 | +/- | 0.54        | kJ/mol | 0           | 0.0%  |
| Evdw:        | -2452   | +/- | 6.5         | kJ/mol | 0           | 0.0%  |
| Ecoul:       | 658.3   | +/- | 2.2         | kJ/mol | 1000        | 10.0% |
| CED:         | 221.76  | +/- | 0.45        | J/cm^3 | 0           | 0.0%  |
| CEDvdw:      | 221.5   | +/- | 0.45        | J/cm^3 | 0           | 0.0%  |
| CEDcoul:     | 0.254   | +/- | 0.01        | J/cm^3 | 0           | 0.0%  |
| dHvap_ideal: | 31.671  | +/- | 0.06        | kJ/mol | 0           | 0.0%  |

LAMMPS stage successfully completed on 12 core(s) on Thu 24 November 2022 at 17:15:52 CET after 387 s (0:06:27)

The output table lists the CED, and a split of the CED into van der Waals and Coulombic distributions. The output also provides the ideal heat of vaporization.

### References

[vanKrevelen2009] D.W. Van Krevelen, "Capter 7 - Cohesive Properties and Solubility", Properties of Polymers (Fourth Edition) Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive group Contributions 2009, Pages 189-227, https://doi.org/10.1016/ B978-0-08-054819-7.00007-8